Sunday 16 July 2017

ชี้แจง ถัว เฉลี่ยเคลื่อนที่ แบบ


การสำรวจความผันผวนเฉลี่ยโดยการย้ายน้ำหนักถ่วงน้ำหนักเชิงตัวเลขเป็นการวัดความเสี่ยงที่พบมากที่สุด แต่มีหลายรสชาติ ในบทความก่อนหน้านี้เราได้แสดงวิธีการคำนวณความผันผวนทางประวัติศาสตร์ที่เรียบง่าย เราใช้ข้อมูลราคาหุ้นที่เกิดขึ้นจริงของ Google เพื่อคำนวณความผันผวนรายวันตามข้อมูลหุ้นภายใน 30 วัน ในบทความนี้เราจะปรับปรุงความผันผวนที่เรียบง่ายและหารือเกี่ยวกับค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบทวีคูณ (EWMA) Historical Vs ความผันแปรเบื้องต้นก่อนอื่นให้วางเมตริกนี้ไว้ในมุมมองเล็กน้อย มีสองแนวทางที่กว้าง: ความผันผวนในอดีตและโดยนัย (หรือโดยนัย) วิธีการทางประวัติศาสตร์สมมติว่าอดีตเป็นคำนำที่เราวัดประวัติศาสตร์ด้วยความหวังว่าจะเป็นการคาดการณ์ ในทางตรงกันข้ามความผันผวนโดยนัยจะละเลยประวัติความเป็นมาซึ่งจะช่วยแก้ปัญหาความผันผวนโดยนัยตามราคาตลาด หวังว่าตลาดจะรู้ได้ดีที่สุดและราคาในตลาดมีแม้กระทั่งโดยนัยประมาณการความผันผวน ถ้าเรามุ่งเน้นไปที่สามวิธีทางประวัติศาสตร์ (ด้านซ้ายด้านบน) พวกเขามีสองขั้นตอนที่เหมือนกัน: คำนวณชุดของผลตอบแทนเป็นระยะ ๆ ใช้สูตรการถ่วงน้ำหนักก่อนอื่นเรา คำนวณผลตอบแทนเป็นระยะ ๆ โดยทั่วไปแล้วผลตอบแทนรายวันจะได้รับผลตอบแทนแต่ละรายการในแง่บวก สำหรับแต่ละวันเราจะบันทึกล็อกอัตราส่วนราคาหุ้น (เช่นราคาในปัจจุบันหารด้วยราคาเมื่อวานนี้เป็นต้น) นี่เป็นการสร้างผลตอบแทนรายวันจาก u i to u i-m ขึ้นอยู่กับจำนวนวัน (m วัน) ที่เราวัด ที่ทำให้เราก้าวไปสู่ขั้นตอนที่สอง: นี่คือแนวทางที่แตกต่างกันสามวิธี ในบทความก่อนหน้า (ใช้ความผันผวนเพื่อวัดความเสี่ยงในอนาคต) เราพบว่าภายใต้สอง simplifications ยอมรับความแปรปรวนง่ายคือค่าเฉลี่ยของผลตอบแทนที่เป็นกำลังสอง: ขอให้สังเกตว่าผลรวมนี้แต่ละผลตอบแทนเป็นระยะจากนั้นแบ่งทั้งหมดโดย จำนวนวันหรือสังเกตการณ์ (ม.) ดังนั้นจริงๆมันเป็นเพียงเฉลี่ยของผลตอบแทนเป็นระยะ ๆ squared ใส่อีกวิธีหนึ่งแต่ละยกกำลังสองจะได้รับน้ำหนักเท่ากัน ดังนั้นถ้า alpha (a) เป็นปัจจัยการถ่วงน้ำหนัก (โดยเฉพาะ 1m) ความแปรปรวนแบบง่ายๆมีลักษณะดังนี้: EWMA ช่วยเพิ่มความแปรปรวนอย่างง่ายจุดอ่อนของวิธีนี้คือผลตอบแทนทั้งหมดจะมีน้ำหนักเท่ากัน การกลับมาเมื่อวาน (ล่าสุด) ไม่มีอิทธิพลต่อความแปรปรวนมากกว่าผลตอบแทนของเดือนที่ผ่านมา ปัญหานี้ได้รับการแก้ไขโดยใช้ค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักแบบทวีคูณ (EWMA) ซึ่งผลตอบแทนที่มากขึ้นล่าสุดมีน้ำหนักมากขึ้นในการแปรปรวน ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบเลขยกกำลัง (EWMA) แนะนำ lambda ซึ่งเรียกว่าพารามิเตอร์การให้ราบเรียบ แลมบ์ดาต้องมีค่าน้อยกว่าหนึ่ง ภายใต้เงื่อนไขดังกล่าวแทนที่จะใช้น้ำหนักที่เท่ากันผลตอบแทนที่ได้รับจะเพิ่มขึ้นตามตัวคูณดังนี้ตัวอย่างเช่น RiskMetrics TM ซึ่งเป็น บริษัท บริหารความเสี่ยงทางการเงินมีแนวโน้มที่จะใช้ lambda เท่ากับ 0.94 หรือ 94 ในกรณีนี้เป็นครั้งแรก (1-0.94) (. 94) 0 6. ผลตอบแทนที่ได้จะเป็นตัวเลข lambda-multiple ของน้ำหนักก่อนหน้าในกรณีนี้ 6 คูณด้วย 94 5.64 และสามวันก่อนหน้ามีน้ำหนักเท่ากับ (1-0.94) (0.94) 2 5.30 นั่นคือความหมายของเลขยกกำลังใน EWMA: แต่ละน้ำหนักเป็นตัวคูณคงที่ (เช่น lambda ซึ่งต้องน้อยกว่าหนึ่ง) ของน้ำหนักก่อนหน้า เพื่อให้แน่ใจว่ามีความแปรปรวนที่ถ่วงน้ำหนักหรือลำเอียงไปยังข้อมูลล่าสุด (หากต้องการเรียนรู้เพิ่มเติมโปรดดูที่แผ่นงาน Excel สำหรับความผันผวนของ Google) ความแตกต่างระหว่างความผันผวนเพียงอย่างเดียวกับ EWMA สำหรับ Google จะแสดงไว้ด้านล่าง ความผันผวนอย่างง่ายมีผลต่อการกลับคืนเป็นระยะ ๆ ทุกๆ 0.196 ตามที่แสดงไว้ในคอลัมน์ O (เรามีข้อมูลราคาหุ้นย้อนหลังเป็นเวลา 2 ปีนั่นคือผลตอบแทน 509 วันและ 1509 0.196) แต่สังเกตว่าคอลัมน์ P กำหนดน้ำหนัก 6, 5.64 แล้ว 5.3 และอื่น ๆ Thats ความแตกต่างระหว่างความแปรปรวนง่ายและ EWMA โปรดจำไว้ว่า: หลังจากที่เราสรุปชุดข้อมูลทั้งหมด (ในคอลัมน์ Q) เรามีความแปรปรวนซึ่งเป็นค่าสแควร์ของส่วนเบี่ยงเบนมาตรฐาน ถ้าเราต้องการความผันผวนเราต้องจำไว้ว่าให้ใช้รากที่สองของความแปรปรวนนั้น ความแตกต่างของความแปรปรวนรายวันระหว่างค่าความแปรปรวนและ EWMA ในกรณีของ Googles มีความหมาย: ความแปรปรวนง่ายทำให้เรามีความผันผวนรายวันอยู่ที่ 2.4 แต่ EWMA มีความผันผวนรายวันเพียง 1.4 (ดูสเปรดชีตเพื่อดูรายละเอียด) เห็นได้ชัดว่าความผันผวนของ Googles ตกลงไปเมื่อไม่นานมานี้ดังนั้นความแปรปรวนที่เรียบง่ายอาจเป็นจำนวนเทียมสูง ความแปรปรวนวันนี้เป็นฟังก์ชันของความแตกต่างของวัน Pior คุณจะสังเกตเห็นว่าเราจำเป็นต้องคำนวณชุดน้ำหนักลดลงอย่างมาก เราจะไม่ใช้คณิตศาสตร์ที่นี่ แต่คุณลักษณะที่ดีที่สุดของ EWMA คือชุดผลิตภัณฑ์ทั้งหมดสามารถลดสูตร recursive ได้อย่างง่ายดาย: Recursive หมายถึงการอ้างอิงความแปรปรวนในปัจจุบัน (คือฟังก์ชันของความแปรปรวนในวันก่อนหน้า) คุณสามารถหาสูตรนี้ในสเปรดชีตได้ด้วยและจะให้ผลเหมือนกันกับการคำนวณแบบ longhand กล่าวว่าค่าความแปรปรวนวันนี้ (ต่ำกว่า EWMA) เท่ากับความแปรปรวนของ yesterdays (weighted by lambda) บวกกับค่า yesterdays squared return (ชั่งน้ำหนักโดยลบหนึ่งแลมบ์ดา) แจ้งให้เราทราบว่าเรากำลังเพิ่มคำสองคำลงท้ายด้วยกันอย่างไร: ความแปรปรวนที่ถ่วงน้ำหนักในวันอังคารและเมื่อวานถ่วงน้ำหนัก แม้กระนั้นแลมบ์ดาก็คือพารามิเตอร์ที่ราบเรียบของเรา แลมบ์ดาที่สูงขึ้น (เช่น RiskMetrics 94) บ่งชี้การสลายตัวช้าลงในซีรีย์ - ในแง่สัมพัทธ์เราจะมีจุดข้อมูลมากขึ้นในซีรีส์และพวกเขาจะลดลงอย่างช้าๆ ในทางกลับกันถ้าเราลดแลมบ์ดาเราจะบ่งชี้ว่าการสลายตัวที่สูงขึ้น: น้ำหนักจะลดลงอย่างรวดเร็วและเป็นผลโดยตรงจากการผุกร่อนที่รวดเร็วใช้จุดข้อมูลน้อยลง (ในสเปรดชีตแลมบ์ดาเป็นอินพุตดังนั้นคุณจึงสามารถทดสอบความไวแสงได้) ความผันผวนโดยสรุปคือส่วนเบี่ยงเบนมาตรฐานของหุ้นและความเสี่ยงที่พบมากที่สุด นอกจากนี้ยังเป็นรากที่สองของความแปรปรวน เราสามารถวัดความแปรปรวนในอดีตหรือโดยนัย (ความผันผวนโดยนัย) เมื่อวัดในอดีตวิธีที่ง่ายที่สุดคือความแปรปรวนที่เรียบง่าย แต่ความอ่อนแอกับความแปรปรวนที่เรียบง่ายคือผลตอบแทนทั้งหมดจะมีน้ำหนักเท่ากัน ดังนั้นเราจึงต้องเผชิญกับข้อเสียแบบคลาสสิก: เราต้องการข้อมูลเพิ่มเติม แต่ข้อมูลที่เรามีมากขึ้นการคำนวณของเราจะเจือจางด้วยข้อมูลที่อยู่ไกล (ไม่เกี่ยวข้อง) ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักที่ถ่วงน้ำหนัก (EWMA) ช่วยเพิ่มความแปรปรวนอย่างง่ายโดยกำหนดน้ำหนักให้กับผลตอบแทนเป็นงวด เมื่อทำเช่นนี้เราสามารถใช้ตัวอย่างขนาดใหญ่ แต่ยังให้น้ำหนักมากขึ้นกับผลตอบแทนล่าสุด (หากต้องการดูบทแนะนำเกี่ยวกับภาพยนตร์เกี่ยวกับหัวข้อนี้โปรดไปที่ Bionic Turtle) การเสนอราคาครั้งแรกในสินทรัพย์ของ บริษัท ที่ล้มละลายจากผู้ซื้อที่สนใจที่ได้รับเลือกโดย บริษัท ที่ล้มละลาย จากกลุ่มผู้เสนอราคา ข้อ 50 คือข้อตกลงการเจรจาต่อรองและข้อยุติในสนธิสัญญา EU ที่ระบุขั้นตอนที่จะต้องดำเนินการสำหรับประเทศใด ๆ ที่ เบต้าเป็นตัวชี้วัดความผันผวนหรือความเสี่ยงอย่างเป็นระบบของการรักษาความปลอดภัยหรือผลงานเมื่อเทียบกับตลาดโดยรวม ประเภทของภาษีที่เรียกเก็บจากเงินทุนที่เกิดจากบุคคลและ บริษัท กำไรจากการลงทุนเป็นผลกำไรที่นักลงทุนลงทุน คำสั่งซื้อความปลอดภัยที่ต่ำกว่าหรือต่ำกว่าราคาที่ระบุ คำสั่งซื้อวงเงินอนุญาตให้ผู้ค้าและนักลงทุนระบุ กฎสรรพากรภายใน (Internal Internal Revenue Service หรือ IRS) ที่อนุญาตให้มีการถอนเงินที่ปลอดจากบัญชี IRA กฎต้องใช้แนวทาง EWMA มีคุณลักษณะที่น่าสนใจอย่างหนึ่ง: ต้องมีข้อมูลที่เก็บไว้ค่อนข้างน้อย หากต้องการอัปเดตค่าประมาณของเราในเวลาใด ๆ เราจะต้องประมาณค่าความแปรปรวนก่อนหน้าและค่าสังเกตล่าสุดเท่านั้น วัตถุประสงค์รองของ EWMA คือการติดตามการเปลี่ยนแปลงความผันผวน สำหรับค่าน้อยค่าสังเกตการณ์ล่าสุดจะมีผลต่อการประมาณการโดยทันที สำหรับค่าที่ใกล้เคียงกับค่าประมาณหนึ่งค่าประมาณจะเปลี่ยนแปลงช้าๆตามการเปลี่ยนแปลงล่าสุดของผลตอบแทนของตัวแปรต้นแบบ ฐานข้อมูล RiskMetrics (ผลิตโดย JP Morgan และเผยแพร่ต่อสาธารณะ) ใช้ EWMA เพื่อปรับปรุงความผันผวนทุกวัน สำคัญ: สูตร EWMA ไม่ถือว่าเป็นระดับความแปรปรวนเฉลี่ยระยะยาว ดังนั้นแนวคิดเรื่องความผันผวนของค่าความผันผวนไม่ได้มาจาก EWMA โมเดล ARCHGARCH เหมาะสำหรับวัตถุประสงค์นี้ วัตถุประสงค์รองของ EWMA คือการติดตามการเปลี่ยนแปลงความผันผวนดังนั้นค่าเล็กน้อยการสังเกตล่าสุดจึงมีผลต่อการประมาณการณ์โดยทันทีและสำหรับค่าที่ใกล้เคียงกับค่าประมาณหนึ่งค่าประมาณจะเปลี่ยนแปลงไปอย่างช้าๆต่อการเปลี่ยนแปลงล่าสุดในการส่งกลับของตัวแปรต้นแบบ ฐานข้อมูล RiskMetrics (ผลิตโดย JP Morgan) และเผยแพร่ต่อสาธารณะในปี 2537 ใช้แบบจำลอง EWMA พร้อมสำหรับการอัปเดตการประมาณความผันผวนทุกวัน บริษัท พบว่าในช่วงของตัวแปรตลาดค่านี้จะให้ค่าพยากรณ์ความแปรปรวนที่ใกล้เคียงกับอัตราความแปรปรวนที่แท้จริง อัตราความแปรปรวนที่เกิดขึ้นในแต่ละวันจะคำนวณเป็นค่าเฉลี่ยถ่วงน้ำหนักเท่ากันในอีก 25 วัน ในทำนองเดียวกันเพื่อคำนวณค่าที่ดีที่สุดของ lambda สำหรับชุดข้อมูลของเราเราจำเป็นต้องคำนวณความผันผวนที่เกิดขึ้น ณ แต่ละจุด มีหลายวิธีให้เลือก จากนั้นคำนวณผลรวมของข้อผิดพลาด (SSE) ระหว่างประมาณการ EWMA กับความผันผวนที่เกิดขึ้นจริง สุดท้ายลด SSE โดยเปลี่ยนค่า lambda ฟังดูง่าย ความท้าทายที่ใหญ่ที่สุดคือการยอมรับวิธีการคำนวณความผันผวนที่เกิดขึ้น ตัวอย่างเช่นคนที่ RiskMetrics เลือก 25 วันหลังจากนั้นเพื่อคำนวณอัตราความแปรปรวนที่ได้รับ ในกรณีของคุณคุณอาจเลือกอัลกอริทึมที่ใช้ปริมาณรายวัน HILO และหรือ OPEN-CLOSE ราคา Q: เราสามารถใช้ EWMA ในการประเมินความผันผวนของความแปรปรวน (หรือคาดการณ์) ได้มากกว่าหนึ่งขั้นตอนการแสดงความผันผวนของ EWMA ไม่ถือว่าเป็นความผันผวนเฉลี่ยในระยะยาวและด้วยเหตุนี้สำหรับขอบฟ้าที่คาดการณ์ไว้มากกว่าหนึ่งขั้นตอน EWMA จะส่งกลับค่าคงที่ value: GARCH และ EWMA วันที่ 21 พฤษภาคม 2553 โดย David Harper, CFA, FRM, CIPM จุดประสงค์: เปรียบเทียบความคมชัดและการคำนวณพาราเมตริกและพารามิเตอร์ที่ไม่เป็น parametric สำหรับการประเมินความผันผวนตามเงื่อนไข 8230 รวมถึง: GARCH APPROACH รวมไปถึง: SMOOTHING เชิงปริมาณ (EWMA) วิธีการสมัยใหม่ให้น้ำหนักมากขึ้นกับข้อมูลล่าสุด ทั้ง EWMA และ GARCH ให้ความสำคัญกับข้อมูลล่าสุด ยิ่งไปกว่านั้นเนื่องจาก EWMA เป็นกรณีพิเศษของ GARCH ทั้ง EWMA และ GARCH ใช้การเพิ่มประสิทธิภาพแบบเลขแจง GARCH (p, q) และโดยเฉพาะอย่างยิ่ง GARCH (1, 1) GARCH (p, q) เป็นโมเดล heteroskedastic แบบมีเงื่อนไขแบบอัตโนมัติ ประเด็นสำคัญ ได้แก่ : อัตชีวประวัติ (AR) ความแปรปรวน tomorrow8217s (หรือความผันผวน) เป็นฟังก์ชันที่ถดถอยของ variance8212s today8217s regresses บนตัวเองเงื่อนไข (C) ความแปรปรวนของ tomorrow8217s ขึ้นอยู่กับเงื่อนไข 82 เมื่อค่าความแปรปรวนล่าสุด ความผันแปรที่ไม่มีเงื่อนไขจะไม่ขึ้นอยู่กับความแปรปรวนของวันนี้ (H) Heteroskedastic (H) ความแปรปรวนไม่คงที่พวกเขาฟลักซ์ตามเวลา GARCH regresses 8220lagged8221 หรือเงื่อนไขทางประวัติศาสตร์ เงื่อนไขที่ล่าช้าคือความแปรปรวนหรือผลตอบแทนที่เท่ากัน แบบจำลอง GARCH (p, q) ที่ถอยกลับบน (p) squared returns และ (q) variances ดังนั้น GARCH (1, 1) 8220lags8221 หรือกลับคืนมาเมื่อกลับมาเป็นช่วงเวลาสุดท้ายของปี 8217s (นั่นคือผลตอบแทนเพียง 1 ครั้ง) และความแปรปรวนของช่วงระยะเวลาสุดท้ายของปีที่ผ่านมา (เช่นเพียง 1 ความแปรปรวน) GARCH (1, 1) โดยสมการต่อไปนี้ สูตร GARCH (1, 1) เช่นเดียวกันสามารถกำหนดได้ด้วยพารามิเตอร์กรีก: ฮัลล์เขียนสมการ GARCH เช่นเดียวกับ: คำแรก (gVL) มีความสำคัญเนื่องจาก VL เป็นค่าแปรปรวนเฉลี่ยในระยะยาว ดังนั้น (gVL) เป็นผลิตภัณฑ์: เป็นความแปรปรวนเฉลี่ยถ่วงน้ำหนักระยะยาว โมเดล GARCH (1, 1) จะแก้ปัญหาความแปรปรวนตามเงื่อนไขตามตัวแปรสามตัวแปร (ความแปรปรวนก่อนหน้า return2 ก่อนหน้าและค่าความแปรปรวนระยะยาว): Persistence เป็นคุณลักษณะที่ฝังอยู่ในโมเดล GARCH เคล็ดลับ: ในสูตรข้างต้นการติดตาคือ (b c) หรือ (alpha-1 beta) ความคงอยู่หมายถึงความเร็ว (หรือช้า) ความแปรปรวนย้อนกลับหรือ 8220decays8221 ไปสู่ค่าเฉลี่ยระยะยาว ความคงอยู่สูงเท่ากับการชะลอตัวของการสลายตัวและการถดถอยช้า 8220 ไปสู่ค่าเฉลี่ยความคงอยู่ของค่าเฉลี่ย 8221 หมายถึงการสลายตัวที่รวดเร็วและการเปลี่ยนกลับอย่างรวดเร็ว 8220 ไปเป็นค่าเฉลี่ย 8222 ความคงอยู่ของ 1.0 หมายถึงไม่มีการพลิกกลับค่าเฉลี่ย ความคงอยู่ของน้อยกว่า 1.0 หมายถึง 8220 การกลับคืนสู่ค่าเฉลี่ย 8221 ซึ่งการคงอยู่ที่ต่ำกว่าหมายถึงการพลิกกลับที่มากขึ้นต่อค่าเฉลี่ย เคล็ดลับ: ข้างต้นผลรวมของน้ำหนักที่กำหนดให้ค่าความแปรปรวนที่ล่าช้าและผลตอบแทนที่ได้รับกลับมาเป็นแบบลันหลังคือความคงอยู่ (persistence bc) ความคงอยู่สูง (มากกว่าศูนย์ แต่น้อยกว่าหนึ่ง) หมายถึงการพลิกกลับช้าไปค่าเฉลี่ย แต่ถ้าน้ำหนักที่กำหนดให้ค่าความแปรปรวนที่ล้าหลังและผลตอบแทนที่ได้รับในช่วงเวลาที่ล่าช้าเกินกว่าหนึ่งแบบจำลองจะไม่เป็นนิ่ง ถ้า (bc) มากกว่า 1 (ถ้า bc gt 1) โมเดลจะไม่เคลื่อนที่และตาม Hull ไม่เสถียร ในกรณีที่เป็นที่ต้องการของ EWMA Linda Allen กล่าวเกี่ยวกับ GARCH (1, 1): GARCH มีทั้งแบบ 8220compact8221 (กล่าวได้ค่อนข้างง่าย) และแม่นยำอย่างมาก โมเดล GARCH มีบทบาทสำคัญในการวิจัยเชิงวิชาการ มีการพยายามเปลี่ยนแปลงรูปแบบต่างๆของ GARCH แต่มีเพียงไม่กี่ที่มีการปรับปรุงในต้นฉบับ ข้อเสียของโมเดล GARCH คือความไม่เป็นเชิงเส้นของตัวเองตัวอย่างเช่น: หาค่าความแปรปรวนระยะยาวใน GARCH (1,1) พิจารณาสมการของ GARCH (1, 1) ด้านล่าง: สมมติว่าพารามิเตอร์อัลฟ่า 0.2 พารามิเตอร์เบต้า 0.7, และโปรดทราบว่าโอเมก้าเป็น 0.2 แต่ don8217t ผิดพลาดโอเมก้า (0.2) สำหรับความแปรผันระยะยาวโอเมก้าเป็นผลิตภัณฑ์ของแกมมาและความแปรปรวนระยะยาว ดังนั้นถ้า alpha beta 0.9 แล้ว gamma ต้องเป็น 0.1 ระบุว่าโอเมก้าเป็น 0.2 เรารู้ว่าความแปรปรวนระยะยาวต้องเป็น 2.0 (0.2 184 0.1 2.0) GARCH (1,1): ข้อแตกต่างระหว่าง Hull และ Allen EWMA เป็นเพียงกรณีพิเศษของ GARCH (1,1) และ GARCH (1,1) เป็นกรณีทั่วไปของ EWMA ความแตกต่างที่เด่นชัดคือ GARCH มีข้อกำหนดเพิ่มเติมสำหรับการพลิกกลับเฉลี่ยและ EWMA ไม่มีการพลิกกลับโดยเฉลี่ย นี่คือวิธีที่เราได้รับจาก GARCH (1,1) ถึง EWMA: จากนั้นเราจะให้ 0 และ (bc) 1 ซึ่งทำให้สมการข้างต้นง่ายขึ้น: นี่คือสูตรที่เทียบเท่ากับสูตรสำหรับค่าเฉลี่ยถ่วงน้ำหนักแบบทวีคูณ (EWMA): ในพารามิเตอร์ EWMA พารามิเตอร์แลมบ์ดาจะกำหนดเวลา 8220 วัน: 8221 แลมบ์ดาที่อยู่ใกล้กับหนึ่ง (high lambda) แสดงการสลายตัวที่ช้า วิธี RiskMetricsTM RiskMetrics เป็นรูปแบบตราสินค้าของวิธีการเฉลี่ยถ่วงน้ำหนักแบบถ่วงน้ำหนักแบบทวีคูณ (EWMA): แลมบ์ดาที่เหมาะสมที่สุด (ตามทฤษฎี) แตกต่างกันไปตามแต่ละระดับสินทรัพย์ แต่พารามิเตอร์ที่เหมาะสมโดยรวมที่ RiskMetrics ใช้อยู่คือ 0.94 ในทางปฏิบัติ RiskMetrics ใช้ปัจจัยการสลายตัวเดียวสำหรับทุกๆชุดข้อมูล: 183 0.94 สำหรับข้อมูลรายวัน 183 0.97 สำหรับข้อมูลรายเดือน (เดือนที่กำหนดไว้ 25 วันทำการ) ในทางเทคนิคโมเดลรายวันและรายเดือนไม่สอดคล้องกัน อย่างไรก็ตามทั้งสองใช้งานได้ง่ายพวกเขาประมาณพฤติกรรมของข้อมูลจริงค่อนข้างดีและมีประสิทธิภาพในการกำหนดค่าผิดพลาด หมายเหตุ: GARCH (1, 1), EWMA และ RiskMetrics แต่ละพารามิเตอร์และ recursive (GARCH amp EWMA) สรุปคำแนะนำ: GARCH (1, 1) เป็น RiskMetrics โดยทั่วไปและตรงกันข้าม RiskMetrics คือ กรณีที่มีข้อ จำกัด ของ GARCH (1,1) โดยที่ 0 และ (bc) 1. GARCH (1, 1) ให้โดย: พารามิเตอร์สามตัวมีน้ำหนักและต้องรวมกันเป็นหนึ่ง: เคล็ดลับ: ระวังเรื่องระยะแรกใน สมการ GARCH (1, 1): omega () gamma () (ความแปรปรวนระยะยาวเฉลี่ย) หากคุณได้รับการสอบถามความแปรปรวนคุณอาจต้องแบ่งน้ำหนักเพื่อคำนวณความแปรปรวนเฉลี่ย พิจารณาว่าเมื่อใดและควรใช้รูปแบบ GARCH หรือ EWMA ในการประมาณความผันผวนในทางปฏิบัติอัตราความแปรปรวนมีแนวโน้มที่จะกลับคืนมาดังนั้นโมเดล GARCH (1, 1) เป็นทฤษฎีที่เหนือกว่า (8220 ยิ่งกว่า 8221) กับโมเดล EWMA โปรดจำไว้ว่านั่นคือความแตกต่างที่ยิ่งใหญ่: GARCH เพิ่มพารามิเตอร์ที่มีน้ำหนักเป็นค่าเฉลี่ยระยะยาวและรวมการพลิกกลับค่าเฉลี่ย เคล็ดลับ: ควรใช้ GARCH (1, 1) เว้นเสียแต่ว่าพารามิเตอร์แรกจะเป็นค่าลบ (ซึ่งโดยนัยหาก alpha beta gt 1) ในกรณีนี้ GARCH (1,1) ไม่เสถียรและขอให้ EWMA อธิบายว่าการประมาณค่าของ GARCH สามารถให้การคาดการณ์ที่แม่นยำมากขึ้นได้อย่างไร ค่าเฉลี่ยเคลื่อนที่คำนวณความแปรปรวนโดยอิงตามหน้าต่างท้ายสุดของการสังเกตการณ์เช่น สิบวันก่อนหน้าที่ผ่านมา 100 วัน มีปัญหาสองประการเกี่ยวกับค่าเฉลี่ยเคลื่อนที่ (Moving Average: MA): คุณลักษณะ Ghosting: การผันผวนของความผันผวน (เพิ่มขึ้นอย่างฉับพลัน) จะรวมอยู่ในเมตริก MA แบบทันทีและจากนั้นเมื่อหน้าต่างต่อท้ายผ่านไปจะลดลงอย่างรวดเร็วจากการคำนวณ ด้วยเหตุนี้เมตริก MA จะเปลี่ยนไปตามความยาวของหน้าต่างที่เลือกข้อมูลแนวโน้มไม่ได้ถูกรวมไว้ GARCH ประเมินการปรับปรุงจุดอ่อนดังกล่าวในสองวิธี: การสังเกตล่าสุดมีการกำหนดน้ำหนักที่มากขึ้น นี้จะเอาชนะเงาเพราะความผันผวนของแรงกระแทกจะส่งผลกระทบต่อการประมาณการทันที แต่อิทธิพลของมันจะค่อยๆจางลงเมื่อเวลาผ่านไปคำที่ถูกเพิ่มเพื่อรวมการพลิกกลับหมายถึงอธิบายว่าการติดตาเกี่ยวข้องกับการพลิกกลับไปเป็นค่าเฉลี่ย ให้สมการ GARCH (1, 1): ความคงอยู่จะได้จาก: GARCH (1, 1) ไม่เสถียรหากมีการคงอยู่ของ gt 1. ความคงอยู่ของ 1.0 แสดงว่าไม่มีการพลิกกลับค่าเฉลี่ย ความคงอยู่ต่ำ (เช่น 0.6) บ่งชี้ว่าการสลายตัวของโปรตีนอย่างรวดเร็วและการพลิกกลับสูงไปเป็นค่าเฉลี่ย เคล็ดลับ: GARCH (1, 1) มีสามน้ำหนักที่กำหนดให้กับสามปัจจัย ความคงอยู่คือผลรวมของน้ำหนักที่กำหนดให้ทั้งความแปรปรวนที่ล่าช้าและผลตอบแทนที่ได้รับกลับคืนมา น้ำหนักอื่น ๆ ถูกกำหนดให้เป็นค่าความแปรปรวนระยะยาว ถ้าค่า P persistence และ G ถูกกำหนดให้เป็นค่าความแปรปรวนระยะยาว PG 1 ดังนั้นถ้า P (persistence) สูงค่า G (mean reversion) ต่ำ: ชุดค่าคงที่ไม่ได้หมายความว่าการย้อนกลับจะแสดงถึง 8220slow decay8221 ไปทาง หมายความ ถ้า P อยู่ในระดับต่ำ G ต้องสูง: ชุดที่ตรงกันข้ามจะหมายถึงการย้อนกลับไปเรื่อย ๆ แสดงให้เห็นถึง 8220rapid decay8221 ต่อค่าเฉลี่ย ค่าเฉลี่ยความแปรปรวนไม่มีเงื่อนไขในโมเดล GARCH (1, 1) มีดังนี้: อธิบายว่า EWMA สามารถลดข้อมูลเก่าลงได้อย่างไรและระบุปัจจัยการสลายตัวของรายวันและรายเดือน RiskMetrics174 ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบเลขยกกำลังสอง (EWMA) แสดงโดย: สูตรข้างต้นเป็นการทำให้ง่ายขึ้นของชุดข้อมูล EWMA 8220true8221 ซึ่งได้จาก: ในชุด EWMA น้ำหนักแต่ละส่วนที่กำหนดให้กับกำลังรับส่งกำลังสองจะเป็นอัตราส่วนคงที่ของน้ำหนักก่อนหน้า โดยเฉพาะแลมบ์ดา (l) คืออัตราส่วนระหว่างน้ำหนักที่ใกล้เคียงกัน ด้วยวิธีนี้ข้อมูลที่เก่ากว่าจะถูกลดเป็นระบบ ส่วนลดระบบสามารถค่อยๆ (ช้า) หรือฉับพลันขึ้นอยู่กับแลมบ์ดา หาก lambda สูง (เช่น 0.99) การลดราคาจะค่อยๆมากทีเดียว ถ้าค่า lambda ต่ำ (เช่น 0.7) การลดราคาจะเกิดขึ้นทันทีทันใด ปัจจัยการสลายตัวของ RiskMetrics TM: 0.94 สำหรับข้อมูลรายวัน 0.97 สำหรับข้อมูลรายเดือน (เดือนที่กำหนดไว้ 25 วันทำการ) อธิบายว่าเหตุใดความสัมพันธ์ของการคาดการณ์จึงมีความสำคัญมากกว่าความผันผวนของการคาดการณ์ เมื่อวัดความเสี่ยงของพอร์ตการลงทุนความสัมพันธ์อาจมีความสำคัญมากกว่าความแปรปรวนของตัวแปรแต่ละตัว ดังนั้นในแง่ความเสี่ยงพอร์ตโฟลิคการคาดการณ์ความสัมพันธ์จะมีความสำคัญมากกว่าการคาดการณ์ความผันผวนของแต่ละบุคคล การคาดการณ์ความแปรปรวนในอนาคตในระยะเวลา (t) จะได้จาก: ตัวอย่างเช่นสมมุติว่าการประมาณความผันผวนของกระแส (ระยะเวลา n) จะได้จาก GARCH (1, 1) ต่อไปนี้ GARCH (1, 1) ) สมการ: ในตัวอย่างนี้ alpha คือน้ำหนัก (0.1) ที่กำหนดให้กับผลตอบแทนที่ได้รับก่อนหน้า (ผลตอบแทนก่อนหน้าเท่ากับ 4) เบต้าคือน้ำหนัก (0.7) ที่กำหนดให้กับความแปรปรวนก่อนหน้า (0.0016) ความผันผวนที่คาดว่าจะเกิดขึ้นในอนาคตคือสิบวัน (n 10) ก่อนอื่นให้แก้ปัญหาความแปรปรวนระยะยาว ไม่ใช่ 0.00008 ระยะนี้เป็นผลมาจากความแปรปรวนและน้ำหนักของมัน เนื่องจากน้ำหนักต้องเป็น 0.2 (1 - 0.1-0.7) ค่าความแปรปรวนระยะยาว 0.0004 ประการที่สองเราต้องการความแปรปรวนในปัจจุบัน (ระยะเวลา n) เราสามารถใช้สูตรเพื่อแก้ปัญหาอัตราความแปรปรวนที่คาดหวังในอนาคตได้: นี่คืออัตราความแปรปรวนที่คาดไว้ดังนั้นความผันผวนที่คาดว่าจะอยู่ที่ประมาณ 2.24 สังเกตความคับแค้นใจนี้: ความผันผวนของกระแสประมาณ 3.69 และความผันผวนในระยะยาวคือ 2. การคาดการณ์ล่วงหน้า 10 วัน 8220fades8221 อัตราปัจจุบันที่ใกล้เคียงกับระยะยาว แบบจำลองการเคลื่อนที่แบบสุ่มและแบบจำลองเชิงเส้นแนวโน้มและรูปแบบที่ไม่เป็นทางการและแนวโน้มสามารถถูกคาดการณ์ได้โดยใช้แบบจำลองที่เคลื่อนที่โดยเฉลี่ยหรือเรียบ สมมติฐานพื้นฐานที่อยู่เบื้องหลังรูปแบบเฉลี่ยและราบเรียบคือชุดเวลาเป็นแบบคงที่ในท้องถิ่นที่มีค่าเฉลี่ยที่เปลี่ยนแปลงไปอย่างช้าๆ ดังนั้นเราจึงใช้ค่าเฉลี่ยเคลื่อนที่ (ท้องถิ่น) เพื่อประมาณค่าปัจจุบันของค่าเฉลี่ยและใช้เป็นค่าพยากรณ์สำหรับอนาคตอันใกล้นี้ ซึ่งถือได้ว่าเป็นการประนีประนอมระหว่างโมเดลเฉลี่ยและแบบสุ่มโดยไม่มีการเลื่อนลอย กลยุทธ์เดียวกันสามารถใช้ในการประมาณและคาดการณ์แนวโน้มในท้องถิ่น ค่าเฉลี่ยเคลื่อนที่มักถูกเรียกว่า quotsmoothedquot version ของชุดเดิมเนื่องจากค่าเฉลี่ยในระยะสั้นมีผลต่อการทำให้เรียบออกกระแทกในชุดเดิม โดยการปรับระดับการทำให้เรียบ (ความกว้างของค่าเฉลี่ยเคลื่อนที่) เราสามารถคาดหวังให้เกิดความสมดุลระหว่างประสิทธิภาพของโมเดลแบบเฉลี่ยและแบบสุ่ม รูปแบบเฉลี่ยที่ง่ายที่สุดคือ ค่าเฉลี่ยของค่าเฉลี่ยของ Y ที่เวลา t1 ที่ทำในเวลา t เท่ากับค่าเฉลี่ยที่แท้จริงของการสังเกตการณ์ m ล่าสุด: (ที่นี่และที่อื่น ๆ ฉันจะใช้สัญลักษณ์ 8220Y-hat8221 เพื่อยืน สำหรับการคาดการณ์ของชุดข้อมูล Y เวลาที่เร็วที่สุดเท่าที่เป็นไปได้โดยก่อนหน้านี้โดยรูปแบบที่กำหนด) ค่าเฉลี่ยนี้อยู่ตรงกลางในช่วง t - (m1) 2 ซึ่งหมายความว่าการประมาณค่าเฉลี่ยของท้องถิ่นจะมีแนวโน้มลดลงตามค่าจริง ค่าเฉลี่ยของท้องถิ่นโดยประมาณ (m1) 2 ช่วงเวลา ดังนั้นเราจึงกล่าวว่าอายุโดยเฉลี่ยของข้อมูลในค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายคือ (m1) 2 เทียบกับช่วงเวลาที่คาดการณ์การคำนวณ: นี่คือระยะเวลาโดยที่การคาดการณ์จะมีแนวโน้มลดลงหลังจุดหักเหในข้อมูล . ตัวอย่างเช่นถ้าคุณคิดค่าเฉลี่ย 5 ค่าล่าสุดการคาดการณ์จะประมาณ 3 ช่วงเวลาในการตอบสนองต่อจุดหักเห โปรดทราบว่าถ้า m1 โมเดลเฉลี่ยเคลื่อนที่โดยเฉลี่ย (SMA) เทียบเท่ากับรูปแบบการเดินแบบสุ่ม (โดยไม่มีการเติบโต) ถ้า m มีขนาดใหญ่มาก (เทียบกับความยาวของระยะเวลาประมาณ) รูปแบบ SMA จะเท่ากับรูปแบบเฉลี่ย เช่นเดียวกับพารามิเตอร์ใด ๆ ของรูปแบบการคาดการณ์การปรับค่าของ k จะเป็นเรื่องปกติที่จะได้รับข้อมูลที่ดีที่สุดนั่นคือข้อผิดพลาดในการคาดการณ์ที่เล็กที่สุดโดยเฉลี่ย นี่คือตัวอย่างของชุดที่ดูเหมือนจะแสดงความผันผวนแบบสุ่มรอบ ๆ ค่าเฉลี่ยที่เปลี่ยนแปลงไปอย่างช้าๆ อันดับแรกให้ลองพอดีกับรูปแบบการเดินแบบสุ่มซึ่งเท่ากับค่าเฉลี่ยเคลื่อนที่ที่สั้น ๆ ของ 1 เทอม: รูปแบบการเดินแบบสุ่มตอบสนองได้อย่างรวดเร็วต่อการเปลี่ยนแปลงในซีรีส์ แต่ในการทำเช่นนี้จะทำให้ได้คำที่มีความหมายมากใน ข้อมูล (ความผันผวนแบบสุ่ม) รวมทั้ง quotsignalquot (ค่าเฉลี่ยในท้องถิ่น) หากเราลองใช้ค่าเฉลี่ยเคลื่อนที่ 5 ข้อโดยทั่วไปเราจะได้รับการคาดการณ์ที่นุ่มนวลกว่า: ค่าเฉลี่ยเคลื่อนที่ 5 เทอมทำให้เกิดข้อผิดพลาดน้อยกว่าแบบจำลองการเดินแบบสุ่มในกรณีนี้ อายุเฉลี่ยของข้อมูลในการคาดการณ์นี้คือ 3 ((51) 2) ดังนั้นจึงมีแนวโน้มที่จะล่าช้ากว่าจุดหักเหภายในสามช่วงเวลา (ตัวอย่างเช่นการชะลอตัวน่าจะเกิดขึ้นในช่วง 21 แต่การคาดการณ์ไม่ได้ผกผันไปหลายช่วงเวลาภายหลัง) สังเกตว่าการคาดการณ์ระยะยาวจากแบบจำลอง SMA เป็นแนวเส้นตรงเช่นเดียวกับการเดินแบบสุ่ม แบบ ดังนั้นรูปแบบ SMA สมมติว่าไม่มีแนวโน้มในข้อมูล อย่างไรก็ตามในขณะที่การคาดการณ์จากแบบจำลองการเดินแบบสุ่มมีค่าเท่ากับค่าที่สังเกตได้ล่าสุดการคาดการณ์จากรูปแบบ SMA จะเท่ากับค่าเฉลี่ยถ่วงน้ำหนักของค่าล่าสุด วงเงินความเชื่อมั่นที่คำนวณโดย Statgraphics สำหรับการคาดการณ์ในระยะยาวของค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายจะไม่ได้รับมากขึ้นเนื่องจากระยะขอบพยากรณ์อากาศเพิ่มขึ้น เห็นได้ชัดว่าไม่ถูกต้อง แต่น่าเสียดายที่ไม่มีทฤษฎีทางสถิติพื้นฐานที่บอกเราว่าช่วงความเชื่อมั่นควรจะกว้างขึ้นสำหรับรุ่นนี้อย่างไร อย่างไรก็ตามไม่ยากที่จะคำนวณค่าประมาณเชิงประจักษ์ถึงขีดจำกัดความเชื่อมั่นสำหรับการคาดการณ์ระยะยาวของเส้นขอบฟ้า ตัวอย่างเช่นคุณสามารถตั้งค่าสเปรดชีตที่จะใช้โมเดล SMA เพื่อคาดการณ์ล่วงหน้า 2 ขั้นตอนล่วงหน้า 3 ก้าวเป็นต้นภายในตัวอย่างข้อมูลที่ผ่านมา จากนั้นคุณสามารถคำนวณส่วนเบี่ยงเบนมาตรฐานตัวอย่างของข้อผิดพลาดในขอบฟ้าพยากรณ์แต่ละครั้งและสร้างช่วงความเชื่อมั่นสำหรับการคาดการณ์ในระยะยาวโดยการเพิ่มและลบคูณของส่วนเบี่ยงเบนมาตรฐานที่เหมาะสม หากเราลองค่าเฉลี่ยเคลื่อนที่ 9 วันเราจะได้รับการคาดการณ์ที่ราบรื่นขึ้นและผลกระทบที่ปกคลุมด้วยวัตถุฉนวน: อายุเฉลี่ยอยู่ที่ 5 ช่วงเวลา ((91) 2) ถ้าเราใช้ค่าเฉลี่ยเคลื่อนที่ในระยะ 19 วันอายุเฉลี่ยจะเพิ่มขึ้นเป็น 10: สังเกตว่าแท้จริงแล้วการคาดการณ์ในขณะนี้ล้าหลังจุดหักเหประมาณ 10 รอบ นี่คือตารางที่เปรียบเทียบสถิติข้อผิดพลาดของพวกเขาซึ่งรวมถึงค่าเฉลี่ยระยะยาว 3 คำ: Model C ซึ่งเป็นค่าเฉลี่ยเคลื่อนที่ 5 เทอมให้ผลตอบแทนน้อยที่สุดของ RMSE โดยมีขอบเล็กกว่า 3 ค่าเฉลี่ยระยะสั้นและระยะ 9 และสถิติอื่น ๆ ของพวกเขาเกือบจะเท่ากัน ดังนั้นระหว่างโมเดลที่มีสถิติข้อผิดพลาดที่คล้ายกันมากเราสามารถเลือกได้ว่าจะต้องการการตอบสนองเล็กน้อยหรือความเรียบขึ้นเล็กน้อยในการคาดการณ์หรือไม่ (ค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนักที่ชี้แจง) แบบจำลองค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายที่กล่าวมาข้างต้นมีคุณสมบัติที่ไม่พึงประสงค์ที่จะถือว่าข้อสังเกตสุดท้ายของ k อย่างเท่าเทียมกันและสมบูรณ์ละเว้นการสังเกตทั้งหมดก่อนหน้านี้ โดยนัยข้อมูลที่ผ่านมาควรจะลดในรูปแบบที่ค่อยๆมากขึ้นตัวอย่างเช่นข้อสังเกตล่าสุดควรมีน้ำหนักมากกว่า 2 ครั้งล่าสุดและครั้งที่ 2 ล่าสุดควรมีน้ำหนักน้อยกว่า 3 ครั้งล่าสุดและ อื่น ๆ แบบเรียบง่าย (SES) ทำให้สำเร็จได้ ให้ 945 แสดงถึงค่าคงที่ quotsmoothing (ตัวเลขระหว่าง 0 ถึง 1) วิธีหนึ่งในการเขียนแบบจำลองคือการกำหนดชุด L ซึ่งแสดงถึงระดับปัจจุบัน (นั่นคือค่าเฉลี่ยในท้องถิ่น) ของชุดข้อมูลดังกล่าวโดยประมาณจากข้อมูลจนถึงปัจจุบัน ค่าของ L ในเวลา t คำนวณจากค่าก่อนหน้าของตัวเองเช่นนี้ดังนั้นค่าที่เรียบนวลในปัจจุบันเป็นค่า interpolation ระหว่างค่าที่ได้จากการเรียบก่อนหน้าและการสังเกตการณ์ในปัจจุบันซึ่ง 945 จะควบคุมความใกล้ชิดของค่าที่ถูก interpolation ไปเป็นค่าล่าสุด การสังเกต การคาดการณ์ในช่วงถัดไปเป็นเพียงค่าที่ได้รับการปรับปรุงแล้วในปัจจุบัน: เราสามารถแสดงการคาดการณ์ครั้งต่อไปได้โดยตรงในแง่ของการคาดการณ์ก่อนหน้าและข้อสังเกตก่อนหน้านี้ในเวอร์ชันเทียบเท่าใด ๆ ต่อไปนี้ ในรุ่นแรกการคาดการณ์คือการแก้ไขระหว่างการคาดการณ์ก่อนหน้าและการสังเกตก่อนหน้านี้: ในรุ่นที่สองการคาดการณ์ครั้งต่อไปจะได้รับโดยการปรับการคาดการณ์ก่อนหน้านี้ในทิศทางของข้อผิดพลาดก่อนหน้าด้วยจำนวนเศษ 945 ข้อผิดพลาดเกิดขึ้นที่ เวลา t ในรุ่นที่สามการคาดการณ์คือค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักแบบยกระดับ (เช่นลด) โดยมีปัจจัยการลดราคา 1-945: สูตรการคาดการณ์เวอร์ชันแก้ไขเป็นวิธีที่ง่ายที่สุดในการใช้งานหากคุณใช้โมเดลในสเปรดชีต: เหมาะกับรูปแบบ เซลล์เดี่ยวและมีการอ้างอิงเซลล์ชี้ไปที่การคาดการณ์ก่อนหน้านี้การสังเกตก่อนหน้าและเซลล์ที่เก็บค่า 945 ไว้ โปรดทราบว่าถ้า 945 1 รูปแบบ SES จะเทียบเท่ากับรูปแบบการเดินแบบสุ่ม (โดยไม่มีการเติบโต) ถ้า 945 0 รูปแบบ SES จะเท่ากับโมเดลเฉลี่ยโดยสมมติว่าค่าที่เรียบเป็นครั้งแรกจะเท่ากับค่าเฉลี่ย (กลับไปด้านบนสุดของหน้า) อายุโดยเฉลี่ยของข้อมูลในการคาดการณ์การเรียบอย่างง่ายและชี้แจงคือ 1 945 เทียบกับระยะเวลาที่คาดการณ์การคำนวณ (นี้ไม่ควรจะเป็นที่เห็นได้ชัด แต่ก็สามารถแสดงได้โดยการประเมินชุดอนันต์.) ดังนั้นการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายมีแนวโน้มที่จะล่าช้าหลังจุดหักเหประมาณ 1 945 รอบระยะเวลา ตัวอย่างเช่นเมื่อ 945 0.5 ความล่าช้าเป็น 2 ช่วงเวลาที่ 945 0.2 ความล่าช้าเป็น 5 ช่วงเวลาที่ 945 0.1 ความล่าช้าเป็น 10 ช่วงเวลาและอื่น ๆ สำหรับอายุเฉลี่ยที่กำหนด (เช่นจำนวนเงินที่ล่าช้า) การคาดการณ์การทำให้การทำให้ลื่นตามการคาดคะเนแบบง่าย (SES) จะค่อนข้างดีกว่าการคาดการณ์ค่าเฉลี่ยเคลื่อนที่อย่างง่าย (SMA) เนื่องจากมีน้ำหนักมากขึ้นในการสังเกตการณ์ล่าสุด - คือ มีการเปลี่ยนแปลงมากขึ้นในช่วงไม่กี่ปีที่ผ่านมา ตัวอย่างเช่นโมเดล SMA ที่มี 9 คำและแบบ SES ที่มี 945 0.2 มีอายุเฉลี่ยอยู่ที่ 5 สำหรับข้อมูลในการคาดการณ์ แต่แบบจำลอง SES จะให้น้ำหนักมากกว่า 3 ค่าล่าสุดมากกว่ารุ่น SMA และที่ ในเวลาเดียวกันมันไม่ได้ 8220forget8221 เกี่ยวกับค่ามากกว่า 9 งวดเก่าดังที่แสดงในแผนภูมินี้ข้อได้เปรียบที่สำคัญอีกประการหนึ่งของโมเดล SES ในรูปแบบ SMA คือรูปแบบ SES ใช้พารามิเตอร์การปรับให้ราบเรียบซึ่งเป็นตัวแปรที่เปลี่ยนแปลงได้อย่างต่อเนื่อง โดยใช้อัลกอริธึม quotsolverquot เพื่อลดข้อผิดพลาดกำลังสองเฉลี่ย ค่าที่เหมาะสมที่สุดของ 945 ในแบบจำลอง SES สำหรับชุดข้อมูลนี้จะเท่ากับ 0.2961 ดังแสดงในที่นี้อายุเฉลี่ยของข้อมูลในการคาดการณ์นี้คือ 10.2961 3.4 งวดซึ่งใกล้เคียงกับค่าเฉลี่ยเคลื่อนที่ 6-term ระยะสั้น การคาดการณ์ระยะยาวจากแบบจำลอง SES เป็นแนวเส้นตรง เช่นเดียวกับในรูปแบบ SMA และรูปแบบการเดินแบบสุ่มโดยไม่มีการเติบโต อย่างไรก็ตามโปรดทราบว่าช่วงความเชื่อมั่นที่คำนวณโดย Statgraphics จะแตกต่างกันไปในรูปแบบที่ดูสมเหตุสมผลและมีความแคบกว่าช่วงความเชื่อมั่นสำหรับรูปแบบการเดินแบบสุ่ม แบบจำลอง SES อนุมานว่าชุดนี้ค่อนข้างจะคาดเดาได้มากกว่าแบบจำลองการเดินแบบสุ่ม แบบจำลอง SES เป็นกรณีพิเศษของรูปแบบ ARIMA ดังนั้นทฤษฎีสถิติของแบบจำลอง ARIMA จึงเป็นพื้นฐานที่ใช้ในการคำนวณระยะเวลาความเชื่อมั่นสำหรับแบบจำลอง SES โดยเฉพาะอย่างยิ่งแบบจำลอง SES คือแบบจำลอง ARIMA ที่มีความแตกต่างอย่างไม่มีความแตกต่างอย่างหนึ่งข้อ MA (1) เทอมและไม่มีระยะคงที่ หรือที่เรียกว่าโควต้า (0,1,1) โดยไม่มีค่าคงที่ ค่าสัมประสิทธิ์ MA (1) ในรูปแบบ ARIMA สอดคล้องกับจำนวน 1-945 ในแบบจำลอง SES ตัวอย่างเช่นถ้าคุณพอดีกับรูปแบบ ARIMA (0,1,1) โดยไม่มีค่าคงที่สำหรับชุดข้อมูลที่วิเคราะห์ที่นี่ค่าสัมประสิทธิ์ MA (1) โดยประมาณจะเท่ากับ 0.7029 ซึ่งใกล้เคียงกับค่า 0.2961 เป็นไปได้ที่จะเพิ่มสมมติฐานของแนวโน้มเชิงเส้นที่ไม่ใช่ศูนย์เป็นแบบ SES ในการทำเช่นนี้เพียงแค่ระบุรูปแบบ ARIMA ที่มีความแตกต่างอย่างไม่มีความแตกต่างอย่างหนึ่งและเทอม MA (1) ที่มีค่าคงที่นั่นคือ ARIMA (0,1,1) โดยมีค่าคงที่ การคาดการณ์ในระยะยาวจะมีแนวโน้มที่เท่ากับแนวโน้มเฉลี่ยที่สังเกตได้ในช่วงประมาณทั้งหมด คุณไม่สามารถดำเนินการนี้ควบคู่กับการปรับฤดูกาลได้เนื่องจากตัวเลือกการปรับฤดูกาลจะถูกปิดใช้งานเมื่อตั้งค่าประเภทของรูปแบบเป็น ARIMA อย่างไรก็ตามคุณสามารถเพิ่มแนวโน้มการชี้แจงในระยะยาวที่คงที่เป็นแบบจำลองการทำให้เรียบแบบเลขแจงที่เรียบง่าย (โดยมีหรือไม่มีการปรับฤดูกาล) โดยใช้ตัวเลือกการปรับค่าเงินเฟ้อในขั้นตอนการคาดการณ์ อัตราการเติบโตของอัตราแลกเปลี่ยน (quotation) ในแต่ละช่วงเวลาสามารถประมาณได้จากค่าสัมประสิทธิ์ความชันในรูปแบบเส้นตรงที่พอดีกับข้อมูลร่วมกับการแปลงลอการิทึมตามธรรมชาติหรืออาจขึ้นอยู่กับข้อมูลอื่น ๆ ที่เป็นอิสระเกี่ยวกับแนวโน้มการเติบโตในระยะยาว . (กลับมาที่ด้านบนสุดของหน้า) Browns Linear (เช่น double) Exponential Smoothing โมเดล SMA และ SES สมมุติว่าไม่มีแนวโน้มใด ๆ ในข้อมูล (โดยปกติแล้วจะเป็นอย่างน้อยหรืออย่างน้อยก็ไม่เลวสำหรับ 1- การคาดการณ์ล่วงหน้าเมื่อข้อมูลมีเสียงดังมาก) และสามารถปรับเปลี่ยนเพื่อรวมแนวโน้มเชิงเส้นที่คงที่ตามที่แสดงข้างต้น สิ่งที่เกี่ยวกับแนวโน้มในระยะสั้นหากชุดแสดงอัตราการเติบโตที่แตกต่างกันหรือรูปแบบตามวัฏจักรที่โดดเด่นอย่างชัดเจนต่อเสียงรบกวนและหากมีความจำเป็นต้องคาดการณ์มากกว่า 1 รอบระยะเวลาล่วงหน้าการประมาณแนวโน้มในท้องถิ่นอาจเป็นไปได้ ปัญหา แบบจำลองการทำให้เรียบเรียบง่ายสามารถสรุปเพื่อให้ได้รูปแบบการเรียบแบบเสวนาเชิงเส้น (LES) ซึ่งจะคำนวณการประมาณระดับท้องถิ่นและระดับแนวโน้ม รูปแบบแนวโน้มที่แตกต่างกันตามเวลาที่ง่ายที่สุดคือรูปแบบการเรียบแบบเสแสร้งแบบสีน้ำตาลของ Browns ซึ่งใช้ชุดการประมวลผลแบบเรียบสองแบบที่ต่างกันออกไปซึ่งมีศูนย์กลางอยู่ที่จุดต่างๆในเวลา สูตรพยากรณ์ขึ้นอยู่กับการอนุมานของเส้นผ่านทั้งสองศูนย์ (รุ่นที่ซับซ้อนมากขึ้นของรุ่นนี้ Holt8217s ถูกกล่าวถึงด้านล่าง) รูปแบบพีชคณิตของ Brown8217s เชิงเส้นแบบเรียบเช่นเดียวกับรูปแบบการเรียบง่ายชี้แจงสามารถแสดงในรูปแบบที่แตกต่างกัน แต่ที่เท่าเทียมกัน รูปแบบมาตรฐานของแบบจำลองนี้มักจะแสดงดังนี้: ให้ S หมายถึงชุดแบบเดี่ยวที่เรียบง่ายได้โดยใช้การเรียบง่ายแบบเลขยกตัวอย่างให้เป็นชุด Y นั่นคือค่าของ S ในช่วง t จะได้รับโดย: (จำได้ว่าภายใต้หลักการง่ายๆ exponential smoothing นี่คือการคาดการณ์ของ Y ในช่วง t1) จากนั้นให้ Squot แสดงชุดที่มีการคูณทวีคูณขึ้นโดยใช้การเรียบแบบเลขแจงธรรมดา (ใช้แบบเดียวกัน 945) กับชุด S: สุดท้ายการคาดการณ์สำหรับ Y tk สำหรับ kgt1 ใด ๆ ให้โดย: ผลตอบแทนนี้ e 1 0 (เช่นโกงเล็กน้อยและให้การคาดการณ์ครั้งแรกเท่ากับการสังเกตครั้งแรกจริง) และ e 2 Y 2 8211 Y 1 หลังจากที่คาดการณ์จะถูกสร้างโดยใช้สมการข้างต้น ค่านี้จะให้ค่าพอดีกับสูตรตาม S และ S ถ้าค่าเริ่มต้นใช้ S 1 S 1 Y 1 รุ่นของรุ่นนี้ใช้ในหน้าถัดไปที่แสดงให้เห็นถึงการรวมกันของการเรียบแบบเสวนากับการปรับฤดูกาลตามฤดูกาล Holt8217s Linear Exponential Smoothing Brown8217s แบบจำลอง LES คำนวณการประมาณระดับท้องถิ่นและแนวโน้มโดยการให้ข้อมูลที่ราบรื่น แต่ข้อเท็จจริงที่ว่าด้วยพารามิเตอร์เรียบเพียงอย่างเดียวจะกำหนดข้อ จำกัด ของรูปแบบข้อมูลที่สามารถพอดีกับระดับและแนวโน้มได้ ไม่ได้รับอนุญาตให้เปลี่ยนแปลงในอัตราที่เป็นอิสระ แบบจำลอง LES ของ Holt8217s กล่าวถึงปัญหานี้ด้วยการรวมค่าคงที่ที่ราบเรียบสองค่าหนึ่งค่าสำหรับหนึ่งและหนึ่งสำหรับแนวโน้ม ทุกเวลา t เช่นเดียวกับในรุ่น Brown8217s มีการประมาณการ L t ของระดับท้องถิ่นและประมาณการ T t ของแนวโน้มในท้องถิ่น ที่นี่พวกเขาจะได้รับการคำนวณจากค่าของ Y ที่สังเกตได้ในเวลา t และการประมาณค่าก่อนหน้าของระดับและแนวโน้มโดยสมการสองตัวที่ใช้การอธิบายแบบเอกซ์โพเน็นเชียลให้เรียบขึ้น หากระดับและแนวโน้มโดยประมาณของเวลา t-1 คือ L t82091 และ T t-1 ตามลำดับจากนั้นคาดว่า Y tshy ที่จะทำในเวลา t-1 เท่ากับ L t-1 T t-1 เมื่อมีการสังเกตค่าจริงค่าประมาณระดับที่ปรับปรุงใหม่จะถูกคำนวณโดยการ interpolating ระหว่าง Y tshy และการคาดการณ์ L t-1 T t-1 โดยใช้น้ำหนักของ 945 และ 1-945 การเปลี่ยนแปลงในระดับโดยประมาณ, คือ L t 8209 L t82091 สามารถตีความได้ว่าเป็นสัญญาณรบกวนของแนวโน้มในเวลา t การประมาณการแนวโน้มของแนวโน้มจะถูกคำนวณโดยการ interpolating ระหว่าง L t 8209 L t82091 และประมาณการก่อนหน้าของแนวโน้ม T t-1 โดยใช้เครื่องชั่ง 946 และ 1-946 การตีความค่าคงที่การทรงตัวของกระแส 946 มีความคล้ายคลึงกับค่าคงที่การปรับให้เรียบระดับ 945 โมเดลที่มีค่าน้อย 946 ถือว่าแนวโน้มมีการเปลี่ยนแปลงเพียงอย่างช้าๆเมื่อเวลาผ่านไป ใหญ่กว่า 946 สมมติว่ามีการเปลี่ยนแปลงอย่างรวดเร็ว แบบจำลองที่มีขนาดใหญ่ 946 เชื่อว่าในอนาคตอันใกล้นี้มีความไม่แน่นอนมากเนื่องจากข้อผิดพลาดในการคาดการณ์แนวโน้มกลายเป็นสิ่งสำคัญมากเมื่อคาดการณ์ล่วงหน้ามากกว่าหนึ่งช่วง (กลับไปด้านบนสุดของหน้า) ค่าคงที่ที่ราบเรียบ 945 และ 946 สามารถประมาณได้ตามปกติโดยลดข้อผิดพลาดของค่าเฉลี่ยของการคาดการณ์ล่วงหน้า 1 ขั้นตอน เมื่อทำใน Statgraphics ค่าประมาณนี้จะเท่ากับ 945 0.3048 และ 946 0.008 ค่าที่น้อยมากของ 946 หมายความว่ารูปแบบสมมติว่ามีการเปลี่ยนแปลงน้อยมากในแนวโน้มจากระยะหนึ่งไปยังอีกรูปแบบหนึ่งดังนั้นโดยทั่วไปโมเดลนี้กำลังพยายามประมาณแนวโน้มในระยะยาว โดยการเปรียบเทียบกับความคิดของอายุโดยเฉลี่ยของข้อมูลที่ใช้ในการประมาณระดับท้องถิ่นของชุดข้อมูลอายุโดยเฉลี่ยของข้อมูลที่ใช้ในการประเมินแนวโน้มในท้องถิ่นเป็นสัดส่วนกับ 1 946 แม้ว่าจะไม่เท่ากันก็ตาม . ในกรณีนี้ที่กลายเป็น 10.006 125 นี่เป็นตัวเลขที่แม่นยำมากที่สุดเท่าที่ความถูกต้องของค่าประมาณ 946 isn8217t จริง ๆ 3 ตำแหน่งทศนิยม แต่มันก็เป็นเรื่องธรรมดาของขนาดตามตัวอย่างขนาด 100 ดังนั้น รุ่นนี้มีค่าเฉลี่ยมากกว่าค่อนข้างมากของประวัติศาสตร์ในการประมาณแนวโน้ม พล็อตการคาดการณ์ด้านล่างแสดงให้เห็นว่าโมเดล LES ประมาณการแนวโน้มท้องถิ่นในวงกว้างขึ้นเล็กน้อยที่ส่วนท้ายของชุดข้อมูลมากกว่าแนวโน้มที่คงที่ในแบบจำลอง SEStrend นอกจากนี้ค่าประมาณของ 945 เกือบจะเหมือนกันกับที่ได้จากการปรับรุ่น SES ที่มีหรือไม่มีแนวโน้มดังนั้นเกือบจะเป็นแบบเดียวกัน ตอนนี้ดูเหมือนว่าการคาดการณ์ที่สมเหตุสมผลสำหรับโมเดลที่ควรจะประเมินแนวโน้มในระดับท้องถิ่นดูเหมือนว่าแนวโน้มในท้องถิ่นมีแนวโน้มลดลงในตอนท้ายของชุดข้อมูลสิ่งที่เกิดขึ้นพารามิเตอร์ของรุ่นนี้ ได้รับการประเมินโดยการลดข้อผิดพลาดสี่เหลี่ยมของการคาดการณ์ล่วงหน้า 1 ขั้นตอนไม่ใช่การคาดการณ์ในระยะยาวซึ่งในกรณีนี้แนวโน้มไม่ได้สร้างความแตกต่างมากนัก หากสิ่งที่คุณกำลังมองหาคือข้อผิดพลาด 1 ขั้นตอนคุณจะไม่เห็นภาพใหญ่ของแนวโน้มในช่วง 10 หรือ 20 ครั้ง เพื่อให้โมเดลนี้สอดคล้องกับการคาดการณ์ข้อมูลลูกตาของเรามากขึ้นเราจึงสามารถปรับค่าคงที่การปรับให้เรียบตามแนวโน้มเพื่อให้ใช้พื้นฐานที่สั้นกว่าสำหรับการประมาณแนวโน้ม ตัวอย่างเช่นถ้าเราเลือกที่จะตั้งค่า 946 0.1 แล้วอายุเฉลี่ยของข้อมูลที่ใช้ในการประเมินแนวโน้มท้องถิ่นคือ 10 ช่วงเวลาซึ่งหมายความว่าเรามีค่าเฉลี่ยของแนวโน้มมากกว่าช่วงเวลา 20 ช่วงที่ผ่านมา Here8217s พล็อตการคาดการณ์มีลักษณะอย่างไรถ้าเราตั้งค่า 946 0.1 ขณะเก็บรักษา 945 0.3 นี่ดูเหมาะสมสำหรับชุดนี้แม้ว่าจะเป็นแนวโน้มที่จะคาดการณ์แนวโน้มดังกล่าวได้ไม่น้อยกว่า 10 งวดในอนาคต สิ่งที่เกี่ยวกับสถิติข้อผิดพลาดนี่คือการเปรียบเทียบรูปแบบสำหรับสองรุ่นที่แสดงข้างต้นเช่นเดียวกับสามรุ่น SES ค่าที่เหมาะสมที่สุดคือ 945 สำหรับรุ่น SES มีค่าประมาณ 0.3 แต่ผลการค้นหาที่คล้ายกัน (มีการตอบสนองน้อยหรือน้อยตามลำดับ) จะได้รับค่า 0.5 และ 0.2 (A) Holts linear exp. การให้ความนุ่มนวลด้วย alpha 0.3048 และ beta 0.008 (B) Holts linear exp. การทำให้เรียบด้วยเอ็กซ์พี 0.3 และเบต้า 0.1 (C) การเพิ่มความเรียบง่ายด้วยการอธิบายด้วย alpha 0.5 (D) การทำให้เรียบอย่างง่ายด้วยเอ็กซ์โป 0.3 (E) การเรียบง่ายด้วยเลขแจงอัลฟา 0.2 สถิติของพวกเขาใกล้เคียงกันมากดังนั้นเราจึงสามารถเลือกได้บนพื้นฐาน ข้อผิดพลาดในการคาดการณ์ล่วงหน้า 1 ขั้นตอนภายในตัวอย่างข้อมูล เราต้องกลับไปพิจารณาเรื่องอื่น ๆ ถ้าเราเชื่อมั่นว่าการคาดการณ์แนวโน้มในปัจจุบันเกี่ยวกับสิ่งที่เกิดขึ้นในช่วง 20 ปีที่ผ่านมาเป็นเรื่องที่ดีพอสมควรเราสามารถสร้างโมเดล LES ด้วย 945 0.3 และ 946 0.1 ได้ ถ้าเราต้องการที่จะไม่เชื่อเรื่องว่ามีแนวโน้มในระดับท้องถิ่นแบบใดแบบหนึ่งของ SES อาจอธิบายได้ง่ายกว่านี้และจะให้การคาดการณ์ระดับกลางของถนนต่อไปอีก 5 หรือ 10 ครั้ง ชนิดของแนวโน้มการอนุมานที่ดีที่สุดคือแนวนอนหรือเส้นตรงหลักฐานเชิงประจักษ์ชี้ให้เห็นว่าหากข้อมูลได้รับการปรับแล้ว (ถ้าจำเป็น) สำหรับอัตราเงินเฟ้อแล้วก็อาจจะไม่ระมัดระวังในการคาดการณ์ระยะสั้นในเชิงเส้น แนวโน้มที่ไกลมากในอนาคต แนวโน้มที่เห็นได้ชัดในวันนี้อาจลดลงในอนาคตอันเนื่องมาจากสาเหตุที่แตกต่างกันเช่นความล้าสมัยของผลิตภัณฑ์การแข่งขันที่เพิ่มขึ้นและการชะลอตัวของวัฏจักรหรือการปรับตัวในอุตสาหกรรม ด้วยเหตุนี้การเรียบอย่างง่ายจึงมักจะทำให้ได้ตัวอย่างที่ดีกว่าที่ควรจะเป็นอย่างอื่นแม้จะมีการอนุมานแนวโน้มในแนวนอน การปรับเปลี่ยนรูปแบบการลดลงของรูปแบบการเพิ่มประสิทธิภาพเชิงเส้นแบบเชิงเส้นมักใช้ในการปฏิบัติเพื่อแนะนำโน้ตของอนุรักษนิยมในการคาดการณ์แนวโน้ม โมเดล LES ที่มีแนวโน้มลดลงสามารถใช้เป็นกรณีพิเศษของรูปแบบ ARIMA โดยเฉพาะ ARIMA (1,1,2) เป็นไปได้ในการคำนวณช่วงความเชื่อมั่นรอบการคาดการณ์ในระยะยาวที่ผลิตโดยแบบจำลองการเรียบแบบเสวนาโดยพิจารณาว่าเป็นกรณีพิเศษของแบบจำลอง ARIMA ความกว้างของช่วงความเชื่อมั่นขึ้นอยู่กับ (i) ข้อผิดพลาด RMS ของโมเดล (ii) ประเภทของการปรับให้เรียบ (แบบง่ายหรือแบบเส้นตรง) (iii) ค่า (s) ของคงที่ราบเรียบ (s) และ (iv) จำนวนรอบระยะเวลาที่คุณคาดการณ์ โดยทั่วไปช่วงเวลาจะกระจายออกไปได้เร็วกว่าเมื่อ 945 มีขนาดใหญ่ขึ้นในรูปแบบ SES และแพร่กระจายได้เร็วกว่ามากเมื่อใช้เส้นตรงมากกว่าการเรียบแบบเรียบ หัวข้อนี้จะกล่าวถึงต่อไปในส่วนรูปแบบ ARIMA ของบันทึกย่อ (กลับไปที่ด้านบนของหน้า.)

No comments:

Post a Comment